
Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 1 © Andrew Davison 2017

Part 7: Cross-application Modules

Chapter 40. Building a Form

Programmatically

BuildForm.java creates a text-based form at run-time, and

attaches listeners to the controls. Three of the controls

(two list boxes and a grid control) are "data aware" which

means that they obtain their data externally from a

database. Figure 1 shows a screenshot of the generated document, with the controls

and data sources labeled.

Figure 1. The BuildForm.java Generated Document.

The document contains two forms: the default "Form", and "GridForm" holding a

single GridControl. "GridForm" employs the same database as "Form", but interacts

with it in a different way.

Table 1 summarizes which listeners are used with which controls. These are Office

listeners (i.e. subclasses of XEventListener) not Java classes.

Form Control Listeners

CommandButton XActionListener, XMouseListener

Topics:Creating

Controls; Assigning a

Data Source to a Form;

Creating Data-aware

Controls; Attaching

Listeners

Example folders: "Forms

Tests" and "Utils"

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 2 © Andrew Davison 2017

Textfield XTextListener, XFocusListener

RadioButton, CheckBox XPropertyChangeListener

ListBox XItemListener

GridControl XSelectionChangeListener,

XGridColumnListener

Table 1. Controls and Associated Listeners Used by BuildForm.java.

The finished form is saved in "build.odt", which retains the data links (since they're

stored as properties of the form controls), but the listeners are discarded.

The main() function of BuildForm.java creates a text document, and adds form

controls by calling createForm():

// globals

private static final String DB_FNM = "liang.odb"; // database

private XTextDocument doc; // for use by the listeners

// in BuildForm.java

public BuildForm()

{

 XComponentLoader loader = Lo.loadOffice();

 doc = Write.createDoc(loader);

 if (doc == null) {

 System.out.println("Writer doc creation failed");

 Lo.closeOffice();

 System.exit(1);

 }

 doc.addEventListener(this);

 // for showing disposing of document (and controls)

 GUI.setVisible(doc, true);

 XTextViewCursor tvc = Write.getViewCursor(doc);

 Write.append(tvc, "Building a Form\n");

 Write.endParagraph(tvc);

 createForm(doc);

 Lo.dispatchCmd("SwitchControlDesignMode");

 // switch from form design/editing mode to live mode

 Lo.waitEnter();

 Lo.saveDoc(doc, "build.odt");

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of BuildForm()

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 3 © Andrew Davison 2017

1. Creating Controls

createForm() makes many calls to Forms.addControl(), and other Forms.addXXX()

methods which indirectly use Forms.addControl(). For example, the call that creates

the "No automatic generation" radio button at the top of the form is:

// part of createForm() in BuildForm.java...

XPropertySet props =

 Forms.addControl(doc, "Option", "No automatic generation",

 "RadioButton", 106, 11, 50, 6);

It returns the model's properties since additional values often need to be set after the

control has been created.

Forms.addControl() starts by creating the control's view, utilizing a subclass of the

Shape service, called ControlShape. The relevant part of the service hierarchy is

shown in Figure 2.

Figure 2. The Shape and ControlShape Services.

Properties in the Shape service define the position, width, and height of the control

inside the form. In the call to Forms.addControl() above, the first pair of numbers,

(106,11), is the intended position, while its width and height are 50 x 6.

After the view has been initialized, the control's model is created by using the string

passed in the method call (e.g. "RadioButton" in this example).

The model and shape are linked together using XControlShape.setControl().

Forms.addControl() is:

// in the Forms class

public static XPropertySet addControl(XComponent doc,

 String name, String label, String compKind, int x, int y,

 int width, int height)

// use the default form, "Form", for the control

{ return addControl(doc, name, label, compKind,

 x, y, width, height, null); }

public static XPropertySet addControl(XComponent doc,

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 4 © Andrew Davison 2017

 String name, String label, String compKind, int x, int y,

 int width, int height, XNameContainer parentForm)

{

 XPropertySet modelProps = null;

 try {

 // create a shape to represent the control's view

 XControlShape cShape =

 Lo.createInstanceMSF(XControlShape.class,

 "com.sun.star.drawing.ControlShape");

 // position and size of the shape

 cShape.setSize(new Size(width*100, height * 100));

 cShape.setPosition(new Point(x * 100, y * 100));

 // adjust the anchor so that the control is tied to the page

 XPropertySet shapeProps = Lo.qi(XPropertySet.class, cShape);

 TextContentAnchorType eAnchorType =

 TextContentAnchorType.AT_PARAGRAPH;

 shapeProps.setPropertyValue("AnchorType", eAnchorType);

 // create the control's model

 XControlModel cModel =

 Lo.createInstanceMSF(XControlModel.class,

 "com.sun.star.form.component." + compKind);

 // insert the model into the form (or default to "Form")

 if (parentForm != null)

 parentForm.insertByName(name, cModel);

 // link model to the shape

 cShape.setControl(cModel);

 // add shape to shapes collection of the doc's draw page

 XDrawPage drawPage = getDrawPage(doc);

 XShapes formShape s= Lo.qi(XShapes.class, drawPage);

 formShapes.add(cShape);

 // set Name and Label properties for the model

 modelProps = Lo.qi(XPropertySet.class, cModel);

 modelProps.setPropertyValue("Name", name);

 if (label != null)

 modelProps.setPropertyValue("Label", label);

 }

 catch (Exception e) {

 System.out.println(e);

 }

 return modelProps;

} // end of addControl()

The control is added to the form in two ways: firstly the control model is placed in the

parent form with:

parentForm.insertByName(name, cModel);

then the control shape is inserted into the form's draw page:

XDrawPage drawPage = getDrawPage(doc);

XShapes formShape s= Lo.qi(XShapes.class, drawPage);

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 5 © Andrew Davison 2017

formShapes.add(cShape);

The Forms class contains several methods that call addControl() with fixed

arguments, and set various model properties. For example, Forms.addButton() makes

a CommandButton:

// in the Forms class

public static XPropertySet addButton(XComponent doc,

 String name, String label, int x, int y, int width, int height)

{

 XPropertySet buttonProps = null;

 try {

 buttonProps = addControl(doc, name, label, "CommandButton",

 x, y, width, height);

 buttonProps.setPropertyValue("HelpText", name);

 // don't want button to be accessible by the "tab" key

 buttonProps.setPropertyValue("Tabstop", false);

 // the button should not steal focus when clicked

 buttonProps.setPropertyValue("FocusOnClick", false);

 }

 catch (Exception e) {

 System.out.println(e);

 }

 return buttonProps;

} // end of addButton()

The "CommandButton" string passed to addControl() means that the model will be an

instance of "com.sun.star.form.component.CommandButton".

Another variant of addControl() is Forms.addLabelledControl() which calls

addControl() twice to attach a text label to the control. For instance, the

"FIRSTNAME" text field is created with:

// part of createForm() in BuildForm.java...

XPropertySet props =

 Forms.addLabelledControl(doc, "FIRSTNAME", "TextField", 11);

The Forms.addLabelledControl() code:

// in the Forms class

public static XPropertySet addLabelledControl(XComponent doc,

 String label, String compKind, int y)

{ return addLabelledControl(doc, label, compKind, 2, y, 6); }

public static XPropertySet addLabelledControl(XComponent doc,

 String label, String compKind, int x, int y, int height)

{

 XPropertySet ctrlProps = null;

 try {

 // create label (fixed text) control

 String name = label + "_Label";

 XPropertySet labelProps =

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 6 © Andrew Davison 2017

 addControl(doc, name, label, "FixedText", x, y, 25, 6);

 // create data field control

 ctrlProps = addControl(doc, label, null, compKind,

 x + 26, y, 40, height); // to the right

 ctrlProps.setPropertyValue("DataField", label);

 // add label props to the control

 ctrlProps.setPropertyValue("LabelControl", labelProps);

 }

 catch (Exception e) {

 System.out.println(e);

 }

 return ctrlProps;

} // end of addLabelledControl()

The label is of type com.sun.star.form.component.FixedText, and linked to the text

field by setting its "DataField" and "LabelControl" properties.

2. Assigning a Data Source to a Form

The "Form" and "GridForm" forms are both 'data aware', which means they're

connected to external databases. Data awareness is supported by the DataForm

subclass of the Form service, which is also connected to the RowSet and ResultSet

services of Base, as in Figure 3.

Figure 3. Part of the DataForm Service Hierarchy.

RowSet in the sdbc module supports the "DataSourceName", "Command", and

"CommandType" properties (amongst others). "DataSourceName" is set to the

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 7 © Andrew Davison 2017

database's URL, and "Command", and "CommandType" specify how the database

will be queried by the form's controls.

The "Form" form is attached to the "liang.odb" database by:

// part of createForm() in BuildForm.java...

XForm defForm = Forms.getForm(doc, "Form");

Forms.bindFormToTable(defForm,

 FileIO.fnmToURL("liang.odb"), "Course");

The code for Forms.bindFormToTable():

// in the Forms class

public static void bindFormToTable(XForm xForm,

 String sourceName, String tableName)

{ Props.setProperty(xForm, "DataSourceName", sourceName);

 Props.setProperty(xForm, "Command", tableName); // any table name

 Props.setProperty(xForm, "CommandType", CommandType.TABLE);

} // end of bindFormToTable()

CommandType.TABLE permits SQL SELECT queries to be sent to the data source

by the controls. The "Command" setting can be the name of any table in the database

since the form's two list boxes (see Figure 1) send their own SELECT queries (see

below).

"GridForm" is set up by a call to Forms.bindFormToSQL() which sends a SQL query

to the database to obtain a result set for filling the GridControl table. The code

fragment in BuildForm.java is:

// part of createForm() in BuildForm.java...

XNameContainer gridCon = Forms.insertForm("GridForm", doc);

XForm gridForm = Lo.qi(XForm.class, gridCon);

Forms.bindFormToSQL(gridForm, FileIO.fnmToURL(DB_FNM),

 "SELECT \"firstName\", \"lastName\" FROM \"Student\"");

The code for Forms.bindFormToSQL():

// in the Forms class

public static void bindFormToSQL(XForm xForm,

 String sourceName, String cmd)

{ Props.setProperty(xForm, "DataSourceName", sourceName);

 Props.setProperty(xForm, "Command", cmd); // SQL statement

 Props.setProperty(xForm, "CommandType", CommandType.COMMAND);

} // end of bindFormToSQL()

It's not clear to me why the command type must be CommandType.COMMAND in

Forms.bindFormToSQL() since the SELECT query should be processable by

CommandType.TABLE, but using that type cause a run-time error.

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 8 © Andrew Davison 2017

3. Creating Data-aware Controls

Some control models have subclasses that support data-awareness, which means they

can access the form's data source using SELECT queries. The different types are

shown in Table 2.

Control Models Type of Access

GridControl Fill a table (grid) with data

DatabaseListBox,

DatabaseComboBox

Fill a list with data

DatabaseTextField,

DatabaseDateField,

DatabaseTimeField,

DatabaseNumericField,

DatabasePatternField,

DatabaseFormattedField,

DatabaseCurrencyField

Fill a text field

DatabaseRadioButton,

DatabaseCheckBox

Specify whether a box is selected

or not.

DatabaseImageControl Read an image

Table 2. Data-aware Control Models.

The service hierarchy for these control models is similar to the hierarchy for

DatabaseListBox shown in Figure 4 (except for GridControl which I'll get to shortly).

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 9 © Andrew Davison 2017

Figure 4. Part of the Service Hierarchy for DatabaseListBox.

Figure 4 should be compared with the service hierarchy for an non-data-aware model,

such as CommandButton in Figure 8 of Chapter 39.

The model is initialized by setting properties using the database associated with the

parent form. Exactly which properties should be set depends on the model, but

DatabaseListBox and DatabaseComboBox are fairly straightforward.

"ListSourceType" is set to ListSourceType.SQL, and "ListSource" assigned a string

array containing a SQL command. The command should be a SELECT query which

returns a single column result set.

The two DatabaseListBoxs in BuildForm.java (see Figure 1) are initialized by calling

Forms.addDatabaseList() like so:

// part of createForm() in BuildForm.java...

Forms.addDatabaseList(doc, "CourseNames",

 "SELECT \"title\" FROM \"Course\"", 90, 90, 20, 6);

Forms.addDatabaseList(doc, "StudNames",

 "SELECT \"lastName\" FROM \"Student\"", 140, 90, 20, 6);

Forms.addDatabaseList() is:

// in the Forms class

public static XPropertySet addDatabaseList(XComponent doc,

 String name, String sqlCmd,

 int x, int y, int width, int height)

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 10 © Andrew Davison 2017

{

 XPropertySet listProps = null;

 try {

 listProps = addControl(doc, name, null, "DatabaseListBox",

 x, y, width, height);

 // listProps.setPropertyValue("DefaultSelection",

 // new short[]{0}); // hangs

 listProps.setPropertyValue("Dropdown", true);

 listProps.setPropertyValue("MultiSelection", false);

 listProps.setPropertyValue("BoundColumn", (short) 0);

 // data-aware properties

 listProps.setPropertyValue("ListSourceType",

 ListSourceType.SQL);

 listProps.setPropertyValue("ListSource",

 new String[] { sqlCmd });

 }

 catch (Exception e) {

 System.out.println(e);

 }

 return listProps;

} // end of addDatabaseList()

The DatabaseListBox control is created by calling Forms.addControl(), and then the

model's properties are configured.

Setting the list's default selection to be its first value causes Office to hang, so I've

commented out that line in addDatabaseList() above. This means that the list boxes

appear to be empty until the user clicks on them.

4. Initializing the GridControl

The GridControl is created by calling Forms.addControl() with "GridControl" as the

model string. Also, since this is the only control not inside the "Form" default form,

it's necessary to include a reference to the nameContainer for "GridForm":

// part of createForm() in BuildForm.java...

// add "GridForm" to document

XNameContainer gridCon = Forms.insertForm("GridForm", doc);

XForm gridForm = Lo.qi(XForm.class, gridCon);

// "GridForm" uses an SQL query as its data source

Forms.bindFormToSQL(gridForm, FileIO.fnmToURL(DB_FNM),

 "SELECT \"firstName\", \"lastName\" FROM \"Student\"");

// create grid control inside "GridForm"

props = Forms.addControl(doc, "SalesTable", null,

 "GridControl", 2, 100, 100, 40, gridCon);

"GridForm"s query generates a result set with two columns consisting of first and last

names from the Student table. For this information to be displayed by the grid, two of

the grid's columns must be attached to the two result set columns. This is done by

calling Forms.createGridColumn() twice:

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 11 © Andrew Davison 2017

// part of createForm() in BuildForm.java...

// get grid control's model

XControlModel gridModel = Lo.qi(XControlModel.class, props);

// connect grid control's columns to result set

Forms.createGridColumn(gridModel, "firstName", "TextField", 25);

Forms.createGridColumn(gridModel, "lastName", "TextField", 25);

The main service for a grid control model is GridControl in the form.components

module. Part of its hierarchy is shown in Figure 5.

Figure 5. Part of the GridControl Service Hierarchy.

If Figure 5's hierarchy is compared to those for other models, such as

CommandButton in Figure 8 of Chapter 39, there are some differences. GridControl

inherits the UnoControlModel service, but not through UnoControlGridModel in the

awt module. A search for such a service returns an entire awt.grid sub-module for grid

services, interfaces, and classes, but these aren't utilized by the form's grid control.

The consequence is that GridControl is initialized in a different way from other

models, and listener code becomes a little harder to implement (as we'll see in section

6).

Forms.createGridColumn() employs the XGridColumnFactory interface to link a grid

column to a result set column:

// in the Forms class

public static void createGridColumn(XControlModel gridModel,

 String dataField, String colKind, int width)

{

 try {

 // column container and factory

 XIndexContainer colContainer =

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 12 © Andrew Davison 2017

 Lo.qi(XIndexContainer.class, gridModel);

 XGridColumnFactory colFactory =

 Lo.qi(XGridColumnFactory.class, gridModel);

 // create the column

 XPropertySet colProps = colFactory.createColumn(colKind);

 colProps.setPropertyValue("DataField", dataField);

 // connect column to this result set column

 colProps.setPropertyValue("Label", dataField);

 colProps.setPropertyValue("Name", dataField);

 if (width > 0)

 colProps.setPropertyValue("Width", new Integer(width * 10));

 // add properties column to container

 colContainer.insertByIndex(colContainer.getCount(), colProps);

 }

 catch (Exception e) {

 System.out.println(e);

 }

} // end of createGridColumn()

5. Attaching Listeners

Table 1 shows that nine Office listeners are used with the controls. To reduce coding,

BuildForm implements their methods:

// in BuildForm.java

public class BuildForm implements XEventListener,

 XActionListener, XPropertyChangeListener,

 XTextListener, XFocusListener, XItemListener,

 XMouseListener, XSelectionChangeListener,

 XGridColumnListener

{

 : // methods for creating the controls ...

 : // methods for attaching listeners to the controls ...

 // listener methods for ...

 // XEventListener

 public void disposing(EventObject ev)

 { String implName = Info.getImplementationName(ev.Source);

 System.out.println("Disposing: " + implName);

 }

 // XActionListener

 public void actionPerformed(ActionEvent ev)

 // called when a button has been pressed

 { System.out.println("Pressed \"" + ev.ActionCommand + "\""); }

 : // many more listener methods

} // end of BuildForm class

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 13 © Andrew Davison 2017

The listener methods are fairly simple, except for the XSelectionChangeListener

attached to the grid control. A button control is attached to a listener like so:

// part of createForm() in BuildForm.java...

XPropertySet props = Forms.addButton(doc, "first", "<<", 2, 63, 8);

listenToButton(props);

The code in listenToButton() is depicted by Figure 6. All the other "listener attacher"

functions in BuildForm.java work in a similar way.

Figure 6. Attaching a Listener to a Button Control.

The property set passed to listenToButton() is cast to XControlModel, and then

converted into a view using Forms.getControl(). The control is cast to an interface

(such as XButton or XTextComponent) which offers an addXXXListener() method.

The listenToButton() method is:

// in BuildForm.java

public void listenToButton(XPropertySet props)

{

 XControlModel cModel = Lo.qi(XControlModel.class, props);

 XControl control = Forms.getControl(doc, cModel);

 XButton xButton = Lo.qi(XButton.class, control);

 xButton.setActionCommand(Forms.getName(cModel));

 xButton.addActionListener(this); // use BuildForms as the listener

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 14 © Andrew Davison 2017

} // end of listenToButton()

6. Listening for Grid Control Selection Changes

Grid selection changes occur when the user clicks on a cell in the table, as in Figure 7.

Figure 7. Grid Control Selection Change.

Figure 8 shows the grid model and control hierarchy.

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 15 © Andrew Davison 2017

Figure 8. Attaching a Listener to a Grid Control.

The grid model inherits UnoControlModel via FormControlModel. On the control

side, GridControl in the form.control module inherits UnoControl directly.

GridControl supports two listener interfaces – XSelectionSupplier and XGridControl.

Their attachment is handled by listenToGrid(), which is called after the control has

been initialized by createForm():

// in createForm() in BuildForm.java...

props = Forms.addControl(doc, "SalesTable", null,

 "GridControl", 2, 100, 100, 40, gridCon);

XControlModel gridModel = Lo.qi(XControlModel.class, props);

Forms.createGridColumn(gridModel, "firstName", "TextField", 25);

Forms.createGridColumn(gridModel, "lastName", "TextField", 25);

listenToGrid(gridModel);

listenToGrid() is defined as:

// in BuildForm.java

public void listenToGrid(XControlModel gridModel)

{

 XControl control = Forms.getControl(doc, gridModel);

 XGridControl gc = Lo.qi(XGridControl.class, control);

 gc.addGridControlListener(this);

 XSelectionSupplier gridSelection =

 Lo.qi(XSelectionSupplier.class, gc);

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 16 © Andrew Davison 2017

 gridSelection.addSelectionChangeListener(this);

} // end of listenToGrid()

There's no point using XGridControlListener in this example because its

columnChanged() method is only triggered when the data in a column changes, which

never occurs. However, XSelectionChangeListener.selectionChanged() is sent an

event whenever the user's selection changes, which is what we're interested in

reporting.

7. Using the Result Set

The XGridControl interface for GridControl doesn't offer all the methods I need for

announcing selection changes.

XGridControl inherits XGrid and XGridFieldDataSupplier. XGrid can retrieve the

currently selected column, while XGridFieldDataSupplier provides access to the data,

but neither of them offer a way to find the currently selected row. That requires the

result set for the table, which can only be examined by starting from the form level.

Getting to the result set requires a number of casts, the first being from the event

object arriving at the listener to the model that sent it. Forms.getEventControlModel()

does that job:

// in the Forms class

public static XControlModel getEventControlModel(EventObject ev)

{ XControl xControl = Lo.qi(XControl.class, ev.Source);

 return xControl.getModel();

}

Another conversion step is from control model to the parent form, which is carried out

by Forms.getFormName():

// in the Forms class

public static String getFormName(XControlModel cModel)

{ XChild xChild = Lo.qi(XChild.class, cModel);

 XNamed xNamed = Lo.qi(XNamed.class, xChild.getParent());

 return xNamed.getName();

}

selectionChanged() utilizes getEventControlModel() and getFormName() to convert

an event object to a form. Finally, XForm is cast to a result set using the hierarchy in

Figure 3.

// in BuildForm.java

public void selectionChanged(EventObject ev)

{

 XControlModel cModel = Forms.getEventControlModel(ev);

 XGridControl gc = Lo.qi(XGridControl.class, ev.Source);

 System.out.println("Grid " + Forms.getName(cModel) +

 " column: " + gc.getCurrentColumnPosition());

Java LibreOffice Programming. Chapter 40. Building a Form Draft #2 (20th March 2017)

 17 © Andrew Davison 2017

 String formName = Forms.getFormName(cModel);

 XForm gForm = Forms.getForm(doc, formName);

 XResultSet rs = Lo.qi(XResultSet.class, gForm);

 try {

 System.out.println(" row: " + rs.getRow());

 }

 catch (com.sun.star.uno.Exception e) {

 System.out.println(e);

 }

} // end of selectionChanged()

selectionChanged() jumps through these hoops in order to print the currently selected

column and row in the table. The selected column is obtained by calling

XGridControl.getCurrentColumnPosition(), and the current row comes from

XResultSet.getRow().

8. Some Bugs

My first version of BuildForm.java had a few problems which caused it to hang.

The most serious occurred when I tried to include an image button in the form. The

relevant lines in createForm() in BuildForm.java were:

// in createForm() in BuildForm.java...

props = Forms.addControl(doc, "Smiley", null,

 "ImageButton", 90, 80, 10, 10);

props.setPropertyValue("ImageURL", FileIO.fnmToURL("smiley.png"));

The button would sometimes appear at the correct position, but cause Office to hang

when pressed, and sometimes the button wouldn't appear at all. After failing to find an

answer online, I commented out the above lines. If anyone knows of a solution please

contact me.

A more minor issue is the initial lack of text in the DatabaseListBoxs. In the original

Forms.addDatabaseList(), the list text was set with:

listProps.setPropertyValue("DefaultSelection", new short[]{0});

This line caused Office to hang, and once again I 'solved' the problem by commenting

out the code. The unfortunate side-effect is that now the list box's text is blank until

the user clicks on the list.

